Spectroscopie des Nébuleuses Planétaires

François Teyssier www.astronomie-amateur.fr

Spectroscopie des Nébuleuses Planétaires

1. Identification et formation des raies

- 2. Mesure des paramètres physiques
- 3. Diversité des nébuleuses planétaires Classe d'excitation
- 4. Nébuleuse planétaire : une phase de la vie des étoiles M < 8 M_{\odot}
- 5. Discriminer les NP des autres objets à spectre d'émission
- 6. Intérêt de l'observation des NP en spectroscopie amateur
- 7. Références et annexes

1 Continuum absent ou très faible

2 Raies

- en émission Milieu chaud et dilué- étroites Vitesse faible

Série de Balmer

 $I(H\alpha) > I(H\beta) > I(H\gamma) \dots$

= Décrément de Balmer

 $I(H\alpha)/I(H\beta) \approx 2.87$

« Case B » : Nébuleuse opaque aux rayons UV, Transparente pour le rayonnement émis dans le visible (4000 Å < λ < 7000 Å)

Recombinaison

 $E_n = -13.6 \text{ eV} / n^2$

E.I. = 13.6 eV

E [eV]

Η

Cas B Nébuleuse opaque aux UV Interaction Photons UV/matière

Η

Durée très courte de présence sur chaque niveau excité (10⁻⁸ s) Cascade de transitions produisant chacune un photon Les photons émis dans le domaine « visible » du spectre sont ceux qui arrivent sur le niveau 2 = Série de Balmer (6563 à 3 Å)

Autres raies formées par Ionisation/Recombinaison

Energie des photons permettant d'ioniser He 2 fois

+ Carbone CIII, Azote NIII

 λ [Å] = 12403 / E.I. [eV] λ = 227 Å

Température correspondante

T [K] = 28 978 200 / λ [Å]] T = 128 000 K

Les « raies interdites » - Le « Nébulium »

Les autres raies sont formées par un processus différent

Les « raies interdites » - Le « Nébulium »

Sir William Huggins: "On the evening of the 29th of August, 1864, I directed the telescope for the first time to a planetary nebula in Draco (NGC 6543). ... I looked into the spectroscope.

No spectrum such as I expected ! A single bright line only !

1864 Premier spectre d'une nébuleuse planétair

Minor Contributions and Notes.

".... TEACH ME HOW TO NAME THE LIGHT."

It would be a convenience if a name were chosen for the as yet undiscovered gas, which is suggested by the typical bright nebular lines, as a principal constituent of the nebulæ. Sir William Huggins has used occasionally the term *nebulum*. Independently, Miss Agnes Clerke has made the suggestion to me of *nebulium* as an appropriate

MARGARET L. HUGGINS.

Astrophysical Journal, vol. 8, p.54-54

Les « raies interdites » - Le « Nébulium »

Début du XIXème Sciècle Tableau de Mendeleïev rempli → pas de place pour le Nébulium

Bowen (1928) Transitions de l'ion O++ Ne pouvant se produire que dans les milieux très dilués Donc impossible à détecter sur Terre \rightarrow « raies interdites » notées [] Ex. : [O III] pour le « nébulium »

[O III] O²⁺

« Raies interdites » = raies excitées par collision

 $E1 - E2 = \frac{1}{2} m (v_1^2 - v_2^2)$ E1 - E2 = 2.48 eV sur le niveau métastable Dans les conditions habituelles de densités connues sur Terre, un électron occupant ce niveau est très rapidement arraché de ce niveau par interaction avec les autres constituants → Transition impossible « Raie interdite »

« Raies interdites » = raies excitées par collision

A₂₁ = probabilité de transition

1. Faible intensité [OIII] 4363

2. Rapport [OIII] 5007 / [OIII] 4659 \approx 3 Car A₂₁ (5007) \approx A₂₁ (4659) x 3

« Raies interdites » = raies excitées par collision

	Ratio théorique	Ratio observé *
I(5007 / I(4959)	2.88	3.01 +/-0.23
I(6548) / I(6583)	2.95	2.92 +/- 0.32

* Acker & al.

Différence entre ratio théorique et ratio observé pour [OIII]

Si la mesure du ratio diffère sensiblement de la plage des ratios observés Problème à résoudre (acquisition-traitement-mesures)

« Raies interdites » = raies excitées par collision

Identification des raies

NGC 7027

Identification des raies

Liste des raies les plus intenses

Raie	Ion/él.	I.P. [eV]	Longueur d'onde des principales raies							
ні	Н	13.6	3835.39	3889.05	3970.07	4101.74	4340.47	4861.33	6562.82	
He I	Не	24.6	4471.48	5875.65	6678.15	7065.3				
He II	He⁺	54.4	4541.59	4685.68	5411.52					
[N II]	N ⁺	29.6	5754.57	6548.06	6583.39					
N III	N ²⁺	47.4	4640							
[O I]	0	13.6	5577.4	6300.32	6363.81					
[0]	O⁺	35.1	7319.92	7325						
[0]	O ²⁺	54.9	4363.21	4958.92	5006.85					
[Ne III]	Ne ²⁺	63.4	3868.76	3967.47						
[S II]	S⁺	23.3	6716.5	6730.7						
[S III]	S ²⁺	34.9	6012.1							
[Ar III]	Ar ²⁺	40.7	7135.8							
[Ar IV]	Ar ³⁺	59.6	4711.34	4740.2						
[Ar V]	Ar ⁴⁺	74.8	7005.7							

Identification des raies

Spectroscopie des Nébuleuses Planétaires

- 1. Identification et formation des raies
- 2. Mesure des paramètres physiques
- 3. Diversité des nébuleuses planétaires Classe d'excitation
- 4. Nébuleuse planétaire : une phase de la vie des étoiles M < 8 M_{\odot}
- 5. Discriminer les NP des autres objets à spectre d'émission
- 6. Intérêt de l'observation des NP en spectroscopie amateur
- 7. Références et annexes

Acquisition

Date : 06-04-2011 Exposure time : 2400 sec (8 x 300 sec) Telescope : SC 25 cm Spectrograph : LISA Slit 23 mcm R = 950 Spectrum processing : ISIS Instrumental response computed with Alp Gem

 Repérer l'emplacement de la fente (Image Autoguidage)
 Intégrer le spectre dans une zone homogène et repérer cette zone

Zone [O III]

Zone $\text{H}\alpha$

Amélioration SNR et diminution de l'incertitude sur les mesures

Exemple : raies soufre [SII]

Dérougissement

Le rayonnement émis par une étoile réagit avec le milieu interstellaire (Absorption, réflexion, diffusion ...) Ile en résulte une diminution de l'intensité appelée Extinction Extinction = I - Io

Le rayonnement de faible longueur d'onde interagit plus le rayonnement de plus grande longueur d'onde : l'extinction dans le bleu est plus forte que dans le rouge. L'intensité relative dans le rouge du spectre observé est plus forte que dans le spectre émis : « rougissement »

 $F(\lambda)_{observe} = F(\lambda)_{emis} e^{-A_V(5500/\lambda)}$

Dérougissement

Exemple Sur Cl Cygni E_{B-V} = 0.4

> Rouge : spectre brut Bleu : spectre dérougi

Spectre de NGC 2392 après traitement

Raies utiles pour l'analyse

Hα Hβ : correction du rougissement
[OIII] [NII] : calcul de la température
[SII] : calcul de la densité

1	2		3	4	5	6
λ	Line	I _{O Int.}	I _{0 Gauss}	l _o	lc	Δ%
				I(Hβ) =100		
4340.47	НІ	22.8	23.7	43.8	45.5	4
4363.21	[0]	6.9	7	12.9	13.4	-3
4685.68	He II	16.5	16.6	30.7	31.1	-1
4861.33	HI	53.7	54.1	100.0	100.0	0
4958.92	[O III]	179	179	330.9	328.8	1
5006.85	[O III]	556.6	552.9	1022.0	1012.3	1
5754.57	[N II]	0.8	0.8	1.5	1.4	6
5875.65	Hel	5.8	6	11.1	10.4	6
6548.06	[N II]		15.2	28.1	25.6	10
6562.82	HI		167.6	309.8	282.2	10
6583.39	[N II]		46.1	85.2	77.6	10
6716.5	[S II]		3.9	7.2	6.5	10
6730.7	[S II]		6.1	11.3	10.2	11

Mesures des intensités

4 : intensités rapportées à Hb = 100

5 : intensités corrigées du rougissement

Comparaison des intensités (corrigées) à des valeurs publiées

Vérification des méthodes d'acquisition, traitement et analyse

		This Work	[1]	[2]	[3]	[4]
4340.47	HI	45.5	46	48	48	47.3
4363.21	[O III]	13.4	14	25	19.5	19.5
4685.68	He II	31.1	38	38	35	37.0
5006.85	[O III]	1012.3	950	1200	1260	1136.7
5754.57	[N II]	1.4	2	1.6	1.51	1./
5754.57 5875.65	[N II] Hel	1.4 10.4	2 6.8	1.6 7.8	1.51 7.45	1.7 7.4
5754.57 5875.65 6562.82	[N II] Hel H I	1.4 10.4 282.2	2 6.8 275	1.6 7.8 295	1.51 7.45 283	1.7 7.4 284.3
5754.57 5875.65 6562.82 6583.39	[N II] Hel H I [N II]	1.4 10.4 282.2 77.6	2 6.8 275 95	1.6 7.8 295 95	1.51 7.45 283 85.5	1.7 7.4 284.3 91.8
5754.57 5875.65 6562.82 6583.39 6716.5	[N II] Hel H I [N II] [S II]	1.4 10.4 282.2 77.6 6.5	2 6.8 275 95 8	1.6 7.8 295 95 6.7	1.51 7.45 283 85.5 4.8	1.7 7.4 284.3 91.8 6.5

Table 5 : Line intensities - Comparison with published values

[1] : Henry & al. (2000) [2] : Barker (1991) [3] Aller & Czyzak (1979) [4] Average of [1], [2] and [3] as computed in Pottasch & al. (2008)

1. Température < -- > Vitesse

Vitesse < -- > Energie

Température[O III]O²⁺

2.1. Excitation par collision prépondérante

2.2. Désexcitation par radiation prépondérante

3. Equilibre entre

- Nombre excitations par collision
- Nombre de désexcitations par émission

Les équations d'équilibre donnent :
$$R[OIII] = \frac{I \ 5007 \ + \ I5659}{I \ 4363} = 7,90. \ \frac{1}{K}. \ e^{\frac{3.29 \ .10^4}{Te}}$$

 $K = 1 + 4. \ 10^{-4} \ . \frac{Ne}{\sqrt{Te}}$

4. Approximation :

Dans les conditions habituelles des NP (Ne ≈ 10000 et Te ≈ 10000) d'où K ≈1
4.1. R[OIII] ne dépend que de la température
4.2. R[OIII] est un indicateur de la température

$$R[OIII] = \frac{I\,5007 + I5659}{I\,4363} = 7,90. \ e^{\frac{3.29.10^4}{Te}}$$
$$Te = \frac{3,29.10^4}{\ln([ROIII])/8,3}$$

Source : Osterbrock, 2006

Température[O III]O²⁺

Température

Mesures sur NGC 2392

$$R[OIII] = \frac{1022+331}{12.9} = 103.6$$
$$Te = \frac{3,29.10^4}{\ln(103.6)/7,9} = 12781 \text{ K} \approx 12800 \text{ K}$$

Henry & al. : Te = 12 700 K

Température

Mesures sur NGC 2392

λ	I (Hβ = 100)
[N II] 6583	77.6
[N II] 6548	25.6
[N II] 5755	1.4

 $R[N \text{ II}] = \frac{77.6 + 25.6}{1.4} = 77.7$ $Te = \frac{2,5.10^4}{\ln(77.7)/8,23} = 11408 \text{K} \approx 11\,400$

Henry & al. (2000) :

NGC 2392

Excitation par collision

2 niveaux métastables très proches Donc peu sensibles à la température

Durée très longue sur les niveaux métastables

Force de collision

 $\Omega_{12} = 4.19$ Niveau 2 plus dense $\Omega_{13} = 2.79$ que le niveau 3

2 niveaux métastables très proches Donc peu sensibles à la température

Durée très longue sur les niveaux métastables

Force de collision $\Omega_{12} = 4.19$ Niveau 2 plus dense $\Omega_{13} = 2.79$ que le niveau 3

Toutes les excitations par collision sont suivies d'une désexcitation spontanée

Le rapport des intensités des raies 6716 et 6731 est le rapport du peuplement des niveaux 2 et 3 (environ 3/2 = 1.5)

2 niveaux métastables très proches Donc peu sensibles à la température

Durée très longue sur les niveaux métastables

Force de collision $\Omega_{12} = 4.19$ Niveau 2 plus dense $\Omega_{13} = 2.79$ que le niveau 3

Toutes les excitations par collision sont suivies d'une désexcitation spontanée

Le rapport des intensités des raies 6716 et 6731 est le rapport du peuplement des niveaux 2 et 3 (environ 3/2 = 1.5) La fréquence des collisions est importante L'intensité des raies interdites diminue

```
Les électrons du niveau 2, plus stable,
sont ceux qui subissent le plus
les collisions.
Le rapport des raies 6716/6730
tend vers 0.4
```


NGC 2392

λI (Hβ = 100)
$$R[SII] = \frac{6.4}{10.2} = 0.64$$
[S II] 67166.4[S II] 673010.2

Ne =
$$10^2 \text{ Te}^{1/2} \cdot \left(\frac{\text{R}_{[\text{SII}]} - 1.49}{5.62 - 12.8\text{R}_{[\text{SII}]}}\right)$$

Ne = $10^2 \ 12000^{1/2} \cdot \left(\frac{0.64 - 1.49}{5.62 - 12.8 \ \text{x} \ 0.64}\right) = 3403$

Ne = 3400 cm⁻³

Barker (1991) : Ne = 3000 cm⁻³

Electronic temperature, density and excitation class derived from planetary n	iebula	a spectrum
---	--------	------------

F. Teyssier 2011

NGC 2392

1	2	3	4	5	6	Balmer Decre	ement						
λ	Line	I _{0 Gauss}	l _o	lc	Δ%			Measured	Theorical	Dereddene			
			I(Hβ) =100			n	Line	value	value	d value			
4340.47	H 1	22.7	/2.9	15.5	4		На	3.10	2.86	2.82	I		
4340.47	10 111	23.7	43.8	43.5	-3	3	HB	1.00	2.00	1.00			
4505.21	Hell		30.7	31.1	-1	5	Hy	0.44	0.47	0.45			
4861 33	н	54.1	100.0	100.0	0		11	0.44	0.47	0.45	i		
4958.92		170	330.9	328.8	1	c(HB)	0.123		E(B-V)	0.08			
5006.85	[0 11]	552.9	1022.0	1012.3	1	1 >			• •				
5754.57	[N II]	0.8	1.5	1.4	6	λ 5007 <i>b</i> , 495 <mark>3</mark>	3.08	እ 6583እ 6548	3.03	A 6583A 6562	0.27]	
5875.65	Hel	6	11.1	10.4	6				1	2	3	4	5
6548.06	[N II]	15.2	28.1	25.6	10	R _(OIII)	103.6	T(K)	12781	12722	12611	13043	12687
6562.82	ні	167.6	309.8	282.2	10				6	7	8	4Ь	
6583.39	[N II]	15.2	85.2	77.6	10	R _[Nil]	73.6	T(K)	11408	10273	10931	10565	
6716.5	[S II]	3.9	7.2	6.5	10				9				
6730.7	[S II]	6.1	11.3	10.2	11	R _(SII)	0.64	Ne (cm ⁻³)	3536				
	•					1/R ₍₅₀₎	1.56		1/6	2/7		4/4b	
Reference	<u>es</u>							T _[00] /T _[N0]	1.12	1.23		1.23	
1,6	6 Osterbrock	& Ferland, l	University Sc	ience Book	s, 2006	- -					_		
2,7	7 Kaler, A.J.,	, 308, 1986				Excitation Clas	ss		Class	Scale			
:	3 Kwok, Cam	bridge astro	physics serie	es, 2007									
4,41	b Acker, EDP	Sciences, 2	2011	21876.72		Gurzadyan 19	998 1	1.64	9	[1-12]	high excitat	tion	
5,8	8 McKenna 8	al., P.A.S.F	P, 108, 1996					-				-	
!	9 Acker & Ja:	schek, Mass	on, 1995			Dopita 1990	11	6.04	6	[1-10]	127438		
10	D Gurzadyan	& Egikyan <i>, I</i>	A.P. Supp. S	er., 181,199 ⁻	1			-			T* [K]		
1	1 Dopita & M	eatheringha	m, A.J., 357,	1990		Reid 2011	12	7.97	7	[1-10]	184115	L	
1:	2 Kaler & Jac	ony, A.J., 3	45, 1989								135167	Kaler, 1989	

G١

clear data	enter test data take	Synth. data	Plasma analysis Ionic frac	tions Strong Line analyses
Wavelength	Observed	Calculated	Analyse Obs.	Synthesize
[O II] 3728	0.0	0.0		
[Ne III] 3869	0.0	0.0	Extinction c	0.125
[O III] 4363	7	13.31	Temp. T(O III)	12734.6
He II 4686	16.6	30.92	Temp. T(N II)	10188.9
H I 4861	54.1	100.0	Density n(SII)	3016.42
[O III] 5007	552.9	1012.45		
[N II] 5755	0.8	1.39	Elemental abundances	H = 1.00
He I 5876	6	10.34	He/H	0.09247
[S III] 6312	0.0	0.0	N/H	1.194E-5
H I 6563	167.6	282.43	O/H	2.296E-4
[N II] 6584	46.1	77.61	Ne/H	0
[S II] 6717	3.9	6.45	S/H	4.667E-7
[S II] 6731	6.1	10.26	Ar/H	0
[Ar III] 7135	0.0	0.0	set Solar a	bundances
[O II] 7325	0.0	0.0		

Plasma diagnostics and strong line analysis of an emission line spectrum

© J.Köppen Kiel/Strasbourg Jan 2007

Java Applets for Teaching of AstroPhysics Joachim Köppen Strasbourg http://astro.u-strasbg.fr/~koppen/nebula/Plasma3.html

Spectroscopie des Nébuleuses Planétaires

- 1. Identification et formation des raies
- 2. Mesure des paramètres physiques
- 3. Diversité des nébuleuses planétaires Classe d'excitation
- 4. Nébuleuse planétaire : une phase de la vie des étoiles M < 8 M_{\odot}
- 5. Discriminer les NP des autres objets à spectre d'émission
- 6. Intérêt de l'observation des NP en spectroscopie amateur
- 7. Références et annexes

NGC 2392

Des conditions physiques différentes au sein d'une même nébuleuse Exemple : M57

Classes d'excitation (E.C.)

Utilisation des intensités des raies dans le but d'estimer la température de l'étoile centrale

0 < E.C. < 5E.C. = 0.45 x $F_{[O III] 5007} / F_{H\beta}$ 5 = < E.C. < 10E.C. = 5.54 x $F_{He II 4686} / F_{H\beta} + 0.78$

Dopita & Meatheringham (1990)

Excitation Class]	Class	Scale]
Gurzadyan 1998 1	o 1.64	9	[1-12]	high excitation
Dopita 1990 1	6.04	6	[1-10]	127438
Reid 2010 12	7.97	8	[1-10]	T* [K] 184115
				135167 Kaler, 1989

Notes :

1. plusieurs modèles donnant des évaluations différentes

2. Kaler & Jacobi (1991), autre méthode : T* < 70 000 K

Spectroscopie des Nébuleuses Planétaires

- 1. Identification et formation des raies
- 2. Mesure des paramètres physiques
- 3. Diversité des nébuleuses planétaires Classe d'excitation
- 4. Nébuleuse planétaire : une phase de la vie des étoiles M < 8 M $_{\odot}$
- 5. Discriminer les NP des autres objets à spectre d'émission
- 6. Intérêt de l'observation des NP en spectroscopie amateur
- 7. Références et annexes

Schéma Nébuleuse planétaire

Spectroscopie des Nébuleuses Planétaires

- 1. Identification et formation des raies
- 2. Mesure des paramètres physiques
- 3. Diversité des nébuleuses planétaires Classe d'excitation
- 4. Nébuleuse planétaire : une phase de la vie des étoiles M < 8 M_{\odot}
- 5. Discriminer les NP des autres objets à spectre d'émission
- 6. Intérêt de l'observation des NP en spectroscopie amateur
- 7. Références et annexes

François Teyssier www.astronomie-amateur.fr

Régions HII

M42 Nébuleuse d'Orion

Spectre C. Buil

Etoiles Symbiotiques

V1016 Cyg

Nova Symbiotique

Diagrammes de diagnostique

Spectroscopie des Nébuleuses Planétaires

- **1.** Identification et formation des raies
- 2. Mesure des paramètres physiques
- 3. Diversité des nébuleuses planétaires Classe d'excitation
- 4. Nébuleuse planétaire : une phase de la vie des étoiles M < 8 M_{\odot}
- 5. Discriminer les NP des autres objets à spectre d'émission
- 6. Intérêt de l'observation des NP en spectroscopie amateur
- 7. Références et annexes

François Teyssier www.astronomie-amateur.fr

- 1. Initiation aux méthodes de mesures
- 2. Des nébuleuses variables sur une courte échelle de temps

NGC 6572

Aspect quasi-stellaire

HST

CIT 5801 5812

5800

N II 5755

5700

IC 4997

Spectroscopie des Nébuleuses Planétaires

- 1. Identification et formation des raies
- 2. Mesure des paramètres physiques
- 3. Diversité des nébuleuses planétaires Classe d'excitation
- 4. Nébuleuse planétaire : une phase de la vie des étoiles M < 8 M $_{\odot}$
- 5. Discriminer les NP des autres objets à spectre d'émission
- 6. Intérêt de l'observation des NP en spectroscopie amateur
- 7. Références et annexes

François Teyssier www.astronomie-amateur.fr

Bibliographie

Spectrometry of nebulae A. Acker

Références

Astrophysics of gaseous nebula and active galactic nuclei D.E. Osterbrock & G.J. Ferland, University Science Books, 2006

The origin and evolution of planetary nebulae S. Kwok, Cambridge astrophysics series, 2000, 2007

Spectroscopy of nebulae A. Acker in Astronomical Spectrogrophy for Amateurs EAS Publications Series, 47 (2011) 189-214

Atomic Astrophysics and Spectroscopy

A. Pradhan & S. Nahar, Cambridge University Press, 2011

Astronomie, Astrophysique

A. Acker, Dunod, 2005

Kaler J.B. , 1976, ApJS, 31, 517 Kaler J.B. , 1986, ApJ, 308, 322 Acker A. & al., 1989, ESO Messenger, 58, 44

Excitation classes

Gurzadyan, G.A., & Egikyan, A.E., 1991, AP&SS, 181, 73 Dopita M.A., & Meatheringham S.J., 1990, ApJ, 357, 140 Reid W.A. & Parker Q.A., arXiv:0911.3689v2, 2011

NGC 2392 studies

Pottasch S.R. and Bernard-Salas, J., 2008, A&A, 490, 715 Henry & al., 2000, ApJ, 531, 928 Barker T., 1991, ApJ,371, 217 Formulaire